Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(3): 133, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353782

RESUMO

Vascular endothelial growth factor (VEGF) is an indispensable element in many physiological processes, while alterations in its level in the circulating system are signs of pathology-associated diseases. Therefore, its precise and selective detection is critical for clinical applications to monitor the progression of the pathology. In this study, an optical immunoassay biosensor was developed as a model study for detecting recombinant VEGF165. The VEGF165 sample was purified from recombinant Kluyveromyces lactis GG799 yeast cells. Indirect ELISA was used during the detection, wherein iron oxide nanoparticles (FeNPs) were utilized to obtain optical signals. The FeNPs were synthesized in the presence of lactose p-amino benzoic acid (LpAB). VEGF165 antibody was conjugated to the LpAB-FeNPs through EDC/NHS chemistry to convert the iron oxide nanoparticles into VEGF165 specific probes. The specificity of the prepared system was tested in the presence of potential serum-based interferents (i.e., glucose, urea, insulin, C-reactive protein, and serum amyloid A), and validation studies were performed in a simulated serum sample. The proposed immunoassay showed a wide detection range (0.5 to 100 ng/mL) with a detection limit of 0.29 ng/mL. These results show that the developed assay could offer a sensitive, simple, specific, reliable, and high-throughput detection platform that can be used in the clinical diagnostics of VEGF.


Assuntos
Colorimetria , Fator A de Crescimento do Endotélio Vascular , Humanos , Fatores de Crescimento do Endotélio Vascular , Imunoensaio , Ácido Benzoico , Nanopartículas Magnéticas de Óxido de Ferro
2.
Methods Appl Fluoresc ; 6(3): 035012, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29765012

RESUMO

A simple, rapid and effective fluorescence sensing platform has been fabricated using a fluorescent conducting polymer surface. For this purpose, a rhodamine based electroactive monomer (RDC) and a functional group containing monomer (SNS) have been copolymerized to develop a conducting polymer based sensor platform having a fluorescence and enzyme-binding surface on ITO electrode. The proposed fluorescence sensing mechanism for detection of glucose is related to the consumption of dissolved oxygen at the double layer of the electrode which is fluorescence quenching agent by glucose-GOx reaction. Concentration of glucose was investigated quantitatively from 0.05 to 1 mM via fluorescence signal measurement. This novel approach could be adapted for the production of various rapid and effective fluorescence sensing platforms for glucose.


Assuntos
Técnicas Biossensoriais/métodos , Glucose/metabolismo , Polímeros/metabolismo , Humanos
3.
Biosens Bioelectron ; 109: 286-294, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-29573728

RESUMO

The construction and biofunctionalization of the poly (Ɛ-caprolactone) (PCL)-chitosan (CHIT) nanofibrous mats, which included Polyamidoamine (PAMAM) dendrimer modified montmorillonite (Mt), for the cell adhesion and electrochemical cytosensing were accomplished in this report. After the intercalation of the PAMAM generation zero dendrimer into the Mt, PAMAM-Mt decorated PCL-CHIT electrospun nanofibers were formed. The addition of PAMAM caused the decrease of contact angle of PCL-CHIT nanofibers. The covalent immobilization of a tripeptide namely Arginylglycylaspartate (RGD) on both the PCL-CHIT/Mt and PCL-CHIT/PAMAM-Mt surface was carried out. U87-MG and HaCaT (negative control) cell lines were incubated on the PCL-CHIT/Mt/RGD and PCL-CHIT/PAMAM-Mt/RGD. The proliferation studies and imaging of the cells were carried out on these fibers. Finally, electrochemical measurements were performed after each modification step by differential pulse/cyclic voltammetry and electrochemical impedance spectroscopy. U87-MG cells were grown better than HaCaT cells on the PCL-CHIT/PAMAM-Mt/RGD surfaces. To the best of our knowledge, there is no study that developed electrochemical cytosensor using electrospun nanofibers as a cell adhesion platform.


Assuntos
Técnicas Biossensoriais , Proliferação de Células , Nanofibras/química , Engenharia Tecidual/métodos , Bentonita/química , Adesão Celular , Quitosana/química , Dendrímeros/química , Poliésteres/química , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA